Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Threshold characteristics of InGaAsP/InP multiple quantum well lasers

Identifieur interne : 000B33 ( Russie/Analysis ); précédent : 000B32; suivant : 000B34

Threshold characteristics of InGaAsP/InP multiple quantum well lasers

Auteurs : RBID : Pascal:01-0033636

Descripteurs français

English descriptors

Abstract

A theoretical analysis and computer simulation of the threshold current density jth and characteristic temperature T0 of multiple quantum well lasers (MQWLs) are presented. Together with the spontaneous radiative recombination, the Auger recombination and the lateral diffusive leakage of carriers from the active region are included into the model. A first-principle calculation of the Auger recombination current is performed. It is shown that the lateral diffusive leakage current is controlled by the radiative and Auger currents. When calculating the carrier densities, the electrons in the barrier regions are properly taken into account. Redistribution of electrons over the active region is shown to increase the threshold current considerably. The dependences of jth and T0 on temperature, number of QWs, cavity length and lateral size are discussed in detail. The effect of lattice and carrier heating on jth and T0 is investigated and shown to be essential at high temperature.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:01-0033636

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Threshold characteristics of InGaAsP/InP multiple quantum well lasers</title>
<author>
<name sortKey="Asryan, L V" uniqKey="Asryan L">L. V. Asryan</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Ioffe Physico-Technical Institute, 26 Polytekhnicheskaya Str.</s1>
<s2>St Petersburg 194021</s2>
<s3>RUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Russie</country>
<wicri:noRegion>St Petersburg 194021</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>State University of New York at Stony Brook</s1>
<s2>Stony Brook, NY 11794-2350</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>State University of New York at Stony Brook</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Gun Ko, N A" uniqKey="Gun Ko N">N. A. Gun Ko</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Ioffe Physico-Technical Institute, 26 Polytekhnicheskaya Str.</s1>
<s2>St Petersburg 194021</s2>
<s3>RUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Russie</country>
<wicri:noRegion>St Petersburg 194021</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Polkovnikov, A S" uniqKey="Polkovnikov A">A. S. Polkovnikov</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Ioffe Physico-Technical Institute, 26 Polytekhnicheskaya Str.</s1>
<s2>St Petersburg 194021</s2>
<s3>RUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Russie</country>
<wicri:noRegion>St Petersburg 194021</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Zegrya, G G" uniqKey="Zegrya G">G. G. Zegrya</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Ioffe Physico-Technical Institute, 26 Polytekhnicheskaya Str.</s1>
<s2>St Petersburg 194021</s2>
<s3>RUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Russie</country>
<wicri:noRegion>St Petersburg 194021</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Suris, R A" uniqKey="Suris R">R. A. Suris</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Ioffe Physico-Technical Institute, 26 Polytekhnicheskaya Str.</s1>
<s2>St Petersburg 194021</s2>
<s3>RUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Russie</country>
<wicri:noRegion>St Petersburg 194021</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Lau, P K" uniqKey="Lau P">P-K Lau</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Nortel (Advanced Technology), PO Box 3511, Station C</s1>
<s2>Ottawa, Ontario, K1Y 4H7</s2>
<s3>CAN</s3>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>Canada</country>
<wicri:noRegion>Ottawa, Ontario, K1Y 4H7</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Makino, T" uniqKey="Makino T">T. Makino</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Nortel (Advanced Technology), PO Box 3511, Station C</s1>
<s2>Ottawa, Ontario, K1Y 4H7</s2>
<s3>CAN</s3>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>Canada</country>
<wicri:noRegion>Ottawa, Ontario, K1Y 4H7</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">01-0033636</idno>
<date when="2000">2000</date>
<idno type="stanalyst">PASCAL 01-0033636 INIST</idno>
<idno type="RBID">Pascal:01-0033636</idno>
<idno type="wicri:Area/Main/Corpus">011E78</idno>
<idno type="wicri:Area/Main/Repository">012622</idno>
<idno type="wicri:Area/Russie/Extraction">000B33</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0268-1242</idno>
<title level="j" type="abbreviated">Semicond. sci. technol.</title>
<title level="j" type="main">Semiconductor science and technology</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Auger effect</term>
<term>Computerized simulation</term>
<term>Gallium arsenides</term>
<term>Gallium phosphides</term>
<term>Indium arsenides</term>
<term>Indium phosphides</term>
<term>Leakage currents</term>
<term>Multiple quantum well</term>
<term>Quantum well lasers</term>
<term>Radiative recombination</term>
<term>Semiconductor lasers</term>
<term>Temperature dependence</term>
<term>Theoretical study</term>
<term>Threshold current</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Etude théorique</term>
<term>Simulation ordinateur</term>
<term>Laser semiconducteur</term>
<term>Laser puits quantique</term>
<term>Puits quantique multiple</term>
<term>Courant seuil</term>
<term>Recombinaison radiative</term>
<term>Effet Auger</term>
<term>Courant fuite</term>
<term>Dépendance température</term>
<term>Indium arséniure</term>
<term>Indium phosphure</term>
<term>Gallium arséniure</term>
<term>Gallium phosphure</term>
<term>Substrat InP</term>
<term>Laser InGaAsP</term>
<term>As Ga In P</term>
<term>4255P</term>
<term>4260L</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">A theoretical analysis and computer simulation of the threshold current density j
<sub>th</sub>
and characteristic temperature T
<sub>0</sub>
of multiple quantum well lasers (MQWLs) are presented. Together with the spontaneous radiative recombination, the Auger recombination and the lateral diffusive leakage of carriers from the active region are included into the model. A first-principle calculation of the Auger recombination current is performed. It is shown that the lateral diffusive leakage current is controlled by the radiative and Auger currents. When calculating the carrier densities, the electrons in the barrier regions are properly taken into account. Redistribution of electrons over the active region is shown to increase the threshold current considerably. The dependences of j
<sub>th</sub>
and T
<sub>0</sub>
on temperature, number of QWs, cavity length and lateral size are discussed in detail. The effect of lattice and carrier heating on j
<sub>th</sub>
and T
<sub>0</sub>
is investigated and shown to be essential at high temperature.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0268-1242</s0>
</fA01>
<fA02 i1="01">
<s0>SSTEET</s0>
</fA02>
<fA03 i2="1">
<s0>Semicond. sci. technol.</s0>
</fA03>
<fA05>
<s2>15</s2>
</fA05>
<fA06>
<s2>12</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Threshold characteristics of InGaAsP/InP multiple quantum well lasers</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>ASRYAN (L. V.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>GUN'KO (N. A.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>POLKOVNIKOV (A. S.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>ZEGRYA (G. G.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>SURIS (R. A.)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>LAU (P-K)</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>MAKINO (T.)</s1>
</fA11>
<fA14 i1="01">
<s1>Ioffe Physico-Technical Institute, 26 Polytekhnicheskaya Str.</s1>
<s2>St Petersburg 194021</s2>
<s3>RUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>State University of New York at Stony Brook</s1>
<s2>Stony Brook, NY 11794-2350</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Nortel (Advanced Technology), PO Box 3511, Station C</s1>
<s2>Ottawa, Ontario, K1Y 4H7</s2>
<s3>CAN</s3>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</fA14>
<fA20>
<s1>1131-1140</s1>
</fA20>
<fA21>
<s1>2000</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>21041</s2>
<s5>354000093386750090</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2001 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>26 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>01-0033636</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Semiconductor science and technology</s0>
</fA64>
<fA66 i1="01">
<s0>GBR</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>A theoretical analysis and computer simulation of the threshold current density j
<sub>th</sub>
and characteristic temperature T
<sub>0</sub>
of multiple quantum well lasers (MQWLs) are presented. Together with the spontaneous radiative recombination, the Auger recombination and the lateral diffusive leakage of carriers from the active region are included into the model. A first-principle calculation of the Auger recombination current is performed. It is shown that the lateral diffusive leakage current is controlled by the radiative and Auger currents. When calculating the carrier densities, the electrons in the barrier regions are properly taken into account. Redistribution of electrons over the active region is shown to increase the threshold current considerably. The dependences of j
<sub>th</sub>
and T
<sub>0</sub>
on temperature, number of QWs, cavity length and lateral size are discussed in detail. The effect of lattice and carrier heating on j
<sub>th</sub>
and T
<sub>0</sub>
is investigated and shown to be essential at high temperature.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B40B55P</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B40B60L</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Etude théorique</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Theoretical study</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Simulation ordinateur</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Computerized simulation</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Laser semiconducteur</s0>
<s5>05</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Semiconductor lasers</s0>
<s5>05</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Laser puits quantique</s0>
<s5>06</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Quantum well lasers</s0>
<s5>06</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Puits quantique multiple</s0>
<s5>07</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Multiple quantum well</s0>
<s5>07</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Pozo cuántico múltiple</s0>
<s5>07</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Courant seuil</s0>
<s5>08</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Threshold current</s0>
<s5>08</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Recombinaison radiative</s0>
<s5>09</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Radiative recombination</s0>
<s5>09</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Recombinación radiativa</s0>
<s5>09</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Effet Auger</s0>
<s5>10</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Auger effect</s0>
<s5>10</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Courant fuite</s0>
<s5>13</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Leakage currents</s0>
<s5>13</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Dépendance température</s0>
<s5>14</s5>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Temperature dependence</s0>
<s5>14</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Indium arséniure</s0>
<s2>NK</s2>
<s5>15</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Indium arsenides</s0>
<s2>NK</s2>
<s5>15</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Indium phosphure</s0>
<s2>NK</s2>
<s5>16</s5>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Indium phosphides</s0>
<s2>NK</s2>
<s5>16</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Gallium arséniure</s0>
<s2>NK</s2>
<s5>17</s5>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Gallium arsenides</s0>
<s2>NK</s2>
<s5>17</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Gallium phosphure</s0>
<s2>NK</s2>
<s5>21</s5>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Gallium phosphides</s0>
<s2>NK</s2>
<s5>21</s5>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>Substrat InP</s0>
<s4>INC</s4>
<s5>75</s5>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>Laser InGaAsP</s0>
<s4>INC</s4>
<s5>76</s5>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>As Ga In P</s0>
<s4>INC</s4>
<s5>77</s5>
</fC03>
<fC03 i1="18" i2="3" l="FRE">
<s0>4255P</s0>
<s2>PAC</s2>
<s4>INC</s4>
<s5>91</s5>
</fC03>
<fC03 i1="19" i2="3" l="FRE">
<s0>4260L</s0>
<s2>PAC</s2>
<s4>INC</s4>
<s5>92</s5>
</fC03>
<fN21>
<s1>022</s1>
</fN21>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Russie/Analysis
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000B33 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Russie/Analysis/biblio.hfd -nk 000B33 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Russie
   |étape=   Analysis
   |type=    RBID
   |clé=     Pascal:01-0033636
   |texte=   Threshold characteristics of InGaAsP/InP multiple quantum well lasers
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024